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Abstract 
 

 When starting from scratch, it is challenging to obtain good scalability in unstructured finite element (FE) 
models.  It is even more difficult to parallelize older existing codes such as FEMWATER.  If done the wrong way, 
the results of scaled speed-up tests can be very discouraging.  There are several factors that can cause poor results.  
These include grid partitioning, the preparation program, boundary conditions, sparse matrix storage format, ghost 
nodes, border elements, updating, solvers for linear and nonlinear equations, and data types.  All these issues were 
addressed in the parallelization of FEMWATER.  When going from 4 to 8 PE’s, with the grid size going from 
62,500 nodes to 125,000 nodes, a scaled speed-up of 95.8% was achieved on the CEWES Cray T3E for a steady-
state problem.  Scaling both the grid to 1,000,000 nodes and PE’s to 64 also gave good results.  A time-dependent, 
unsaturated flow problem was also successfully run using 198 PE’s.  The same code that runs on the Cray T3E also 
runs without change on the IBM SP system.  The purpose of this paper is to describe the techniques used to achieve 
these results by addressing the items mentioned above and in the list.  Note that only subsurface flow is discussed in 
this paper.  Each item will now be briefly described. 
 
1. Grid Partitioning.  Making a balanced load by using a good grid partitioning is essential to achieving efficient 

scaling. 
 
2. Preparation.  The program to convert the global data into data for each processing element (PE) is very 

important and with care it can be reduced to very short running times. 
 
3. Boundary Conditions, Sparse Matrix Storage Forma, Ghost Nodes, and Border Elements.  Many FE programs 

apply boundary conditions at the element level, so they do not store a global stiffness matrix.  However, 
FEMWATER creates a global stiffness matrix in sparse format and modifies it when a specified pressure 
boundary condition is given.  A boundary condition applied to a node in one PE can generate changes for the 
stiffness matrix stored in neighboring PE’s. This can lead to significant communication times.  Deciding how to 
handle the elements that cross PE boundaries is of critical importance to getting good performance. 

 
4. Updating.  Updating the ghost nodes using MPI can give inconsistent results on different machines.  Sometimes 

what works on one system completely fails on another.  What is presented here is what worked well across the 
different platforms. 

 
5. Solvers.  Solvers for linear and nonlinear equations are a significant research topic in and of themselves.  What 

will be presented here are results for a relaxation solver used on a steady-state and difficult unsaturated flow 
problem. 

 



6. Data Types.  FEMWATER runs in double precision mode on a workstation.  Getting the MPI to work correctly 
on multiple platforms requires the use of data types that will be described. 

 
 

1.  Introduction 
  
1.1 Description of FEMWATER 
 

FEMWATER (Lin, Richards, Talbot, Yeh, Cheng, Cheng, and Jones, 1997) is a legacy unstructured grid, 
finite element code that models groundwater flow and transport.  The flow can be unsaturated, so added to the 
geometric complexity is a system of nonlinear equations to solve at each time step.  Data files for FEMWATER are 
typically generated from the DoD Groundwater Modeling System (GMS) (Groundwater Modeling Team, 1998), and 
they include a geometry file, a boundary condition and parameter file, and a super file containing file names. 
 
1.2 Challenges 
 
 When starting from scratch, it is challenging to obtain good scalability in unstructured finite element 
models.  It is even more difficult to parallelize older existing codes such as FEMWATER.  If done the wrong way, 
the results of scaled speed-up tests can be very discouraging.  There are several factors that can cause poor results. 
These include grid partitioning, the preparation program, boundary conditions, sparse matrix storage format, ghost 
nodes, border elements, updating, solvers for linear and nonlinear equations, and data types.  All these issues were 
addressed in the parallelization of FEMWATER with excellent results, and these items will now be discussed in 
greater detail. 
 
 

2.  Parallelization of FEMWATER 
 

 The techniques used to successfully parallelize FEMWATER are now described in more detail. Only flow 
modeling will be discussed in this paper. 
 
2.1 Grid Partitioning 
 

Partitioning the grid so each PE has roughly the same load is critical for good performance.  METIS 
(Karypis, 1998) was chosen as it takes only a few seconds to run and is readily available.  Table 1 shows results for 
the steady-state problem for 4, 8, 16, and 32 PE’s where a block partition was compared to a METIS partition for 4, 
8, and 16 PE’s.  The block partition is excellent, but METIS consistently out-performed it. 
 
2.2 Preparation 
 

The basic paradigm is to change the original FEMWATER code as little as possible.  Therefore, a 
preparation code must be written to start with the original input files and create input files for each PE that look the 
same as the original files but have only the data needed by each respective PE.  This preparation program can take 
lots of time to run on a singe PE, and it can also get involved with lengthy sorting.  However, when run in parallel 
and with care taken to keep track of local, ghost, and global node and element numbers, the preparation code can run 
very efficiently.  Table 2 gives times for 4, 8, and 64 PE’s.  Less than one minute for 1,000,000 nodes is excellent as 
unsaturated flow problems can take hours. 
 
 The preparation process consists of: (1) determining the local, global, and ghost node and element numbers 
for each PE and writing each PE a file: (2) writing a geometry file for each PE that looks like the original: and (3) 
processing and writing a parameter and boundary condition file for each PE that looks like the original. 
 
 
 



2.3 Boundary Conditions, Sparse Matrix Storage Format, Ghost Nodes, and Border Elements 
 

Many recently-developed FE programs apply boundary conditions at the element level, so they do not store 
a global stiffness matrix.  However, FEMWATER creates a global symmetric stiffness matrix in sparse format and 
modifies it when a specified pressure head boundary condition is given to maintain that symmetry.  Thus, a 
boundary condition applied to a node in one PE can generate changes for the stiffness matrix stored in neighboring 
PE’s.  Figure 1 shows what happens to the [K]{h} = {Q} system of equations when a six-node problem is partitioned 
into two parts for two PE’s when having pressure head, h = h0, specified at node 3.  The terms in italics are not 
actually stored.  Row 3, column 3, and the right-hand side are modified.  This can lead to significant communication 
times as it can cross several PE boundaries.  The solution that leads to no addition of parallel code in the process of 
applying boundary conditions is correctly handling the ghost nodes and border elements where nodes of that element 
belong to different PE’s (see Figure 2).  First, the system of equations shown in Figure 1 is assembled one element at 
a time, so assemble the border elements in both PE’s.  Next, the preparation program outputs a file identical to 
FEMWATER format for the parameter and boundary condition data.  In this process keep boundary condition data 
for both the owned nodes and ghost nodes.  For the nodes owned by the respective PE, all boundary conditions will 
then be done correctly.  This is because the stiffness matrix only contains non-zero terms for neighboring nodes.  
One would first think that doing the element twice is very inefficient, but it is actually “free” because, as seen in 
Figure 2, rather than PE 0 doing six elements and PE 1 doing three, both PE 0 and PE 1 assemble six elements, 
giving a perfect load balance.  FEMWATER now works without barriers, and the solver only works on the owned 
nodes by the respective PE’s before updating the shared data. 
 
 

Table 1.  METIS versus Block Partition for the T3E 
 Grid Size No. of PE’s Solver Iterations Time (sec) Scaled Speed-Up (%) 

Block  Partition 50 X 50 X 25 4 1148 134.0 ~ 
METIS 50 X 50 X 25 4 1150 133.6 ~ 

Block  Partition 50 X 50 X 50 8 1160 147.1 91.1 
METIS 50 X 50 X 50 8 1163 139.5 95.8 

Block  Partition 50 X 50 X 100 16 1166 145.1 92.4 
METIS 50 X 50 X 100 16 1168 144.2 92.6 

Block  Partition 50 X 100 X 100 32 1173 149.5 89.6 
 
 

Table 2.  Preparation Program Times  
Grid Size No. of PE’s Time (sec) 

50 X 50 X 25 4 4.3 
50 X 50 X 50 8 7.0 

100 X 100 X 100 64 39.6 
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Figure 1.  Specified Head Boundary Condition  
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Figure 2.  Ghost Nodes and Border Elements 
 
 
2.4 Updating 
 
 MPI behaves remarkably differently on different systems.  After trying several different ways to update 
information for the ghost nodes from other PE’s, the code in Ta ble 3 was chosen as it works well for both the T3E 
and SP.  Sorting the ghost nodes in each PE allows ghost data to be received in consecutive order.  
 
2.5 Solvers 
 
 The solver is critical to the successful parallelization of any implicit numerical code.  T able 1 shows good 
results for the steady-state problem.  The solver used here is a modified alternating direction relaxation method.  
Note that the scaled speed-up results are quite good.  However, for 32 PE’s or less, the grid was only increased in a 
direction different from the flow direction.  Had the grid been increased in the direct ion of flow (+x), the number of 
iterations would have increased somewhat.  Experience with a multi -grid pre-conditioner to a conjugate gradient 
solver on a structured grid has shown that this increase in iterations was almost nonexistent there (from 17 to 19).  
 
 

Table 3.  MPI Code 
      Do for each sending_PE to myid 
C 
c         Receive num values in the vector v starting at nst from  
c         sending_PE. 
C 
        Call MPI_IRECV (v(nst), num, MPI_REAL8, sending_PE, itag,  
c         MPI_COMM_WORLD, ireq(i), ierror)  
      End do 
C 
      Do for each receiving_PE from myid  
C 
c         After the data has been packed in buff, send num values to  
c         receiving_PE. 
C 
          Call MPI_SEND (buff, num, MPI_REAL8, receiving_PE, itag,  
     &      MPI_COMM_WORLD, ierror) 
        end if 
      End do 
C 
      Do for each sending_PE to myid 
C 
c         Wait until the message is received.  
C 
        Call MPI_WAIT (ireq(i), istat, ierror)  
      End do 



The equivalent pre -conditioner and solver for an unstructured grid of FEMWATER is an area of further 
investigation.  
 

The unsaturated flow case is much more difficult.  However, a benchmark hard -to-converge unsaturated 
flow problem was also successfully solved by not completely solving the system of linear equations (100 iterations 
maximum) at each nonlinear iteration.  This technique led to less overall computation time and avoided the 
challenge of completely solving a linear system with mate rial properties varying several orders of magnitude..  
Table 4 gives results for this problem for one time step using the block partition.  Note again that the scaled speed -
up results are excellent.  
 
2.6 Data Types 
 

FEMWATER runs in double precision mode o n a workstation and the SP, and single precision on the T3E..  
What allowed the code to run correctly without change on both these systems is first REAL * 8 is used for all the 
floating point variables, and REAL8 is used as the data type in the MPI calls ( see Table 3). 
 
 

3.  Conclusion 
 
 It is possible with careful handling of the ghost nodes and border elements to achieve good scaled 
performance on unstructured-grid flow codes with a minimum of changes to the original legacy program.  What pre -
conditioners / solvers work best on a given computing platform is still an area of investigation yet to be resolved.  
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Table 4.  Unsaturated Flow Results for the T3E 
Grid Size No. of PE’s Nonlinear Iterations Time (sec) Scaled Speed-Up (%) 

121 X 5 X 81 4 114 777.1 ~ 
121 X 10 X 81 8 114 861.8 90.2 
121 X 20 X 81 16 115 945.7 82.2 
121 X 40 X 81 32 115 1015.6 76.5 
121 X 80 X 81 64 118 1149.3 67.6 



 


